
An Architecture Description Language
for Dynamic Sensor-Based Applications

Humberto Cervantes
Universidad Autonoma Metropolitana-Iztapalapa

(UAM-I)
Iztapalapa. D.F., Mexico

hcm@xanum.uam.mx

Didier Donsez, Lionel Touseau
University of Grenoble-1

LIG Laboratory, ADELE team
Grenoble, France

Didier.Donsez@imag.fr, Lionel.Touseau@imag.fr

Abstract—This paper presents an approach to describe dynamic
sensor-based applications using a declarative language called
WADL. Dynamic sensor-based applications are characterized by
the fact that measurement producers (sensors) and consumers
are introduced or removed from an execution environment at
run-time. Supporting this degree of dynamism is usually done
programmatically, and the WADL intends to simplify this task
and to provide developers with an explicit view of the system
architecture, while supporting its dynamic evolution. The paper
describes the WADL, its implementation on top of the OSGi
WireAdmin Service, and some experimentation results.

Keywords-architectural description language, dynamic sensor-
based applications, OSGi

I. INTRODUCTION
The next wave of e-business will probably rely on the

“Internet of Things” where data generated by many diverse
devices will be collected by using a variety of sensors [1].
Sensor-based applications (SBAs) seek to acquire, collect,
filter, aggregate, analyze and react to measurements gathered
through a network of physical sensors that are spread in the
physical world. This information should be integrated into
different applications to support activities such as automation
control (SCADA) or decision support (data analysis and
monitoring). New business opportunities and models (pay-per-
use, pay-as-you drive, etc) can be created from the online and
offline exploitation of the information on the physical world.
Examples of measurements that are obtained through sensors
include RFID identifiers, GPS vehicle positions, room
temperatures, smoke density in a lobby, blood glucose levels,
etc.

Sensor-based applications can be nicely designed by using
mainly the Producer-Consumer communication pattern [2]
where sensors produce measurements and, data processing
modules consume produced data. Connecting producers and
consumers is a frequent activity in SBA. This pattern differs
from the publish-subscribe communication pattern since it
combines push and pull interactions. The producers push the
data to the consumers when new data is acquired, however
consumers can force the production of a new value or retrieve
the previous value. Moreover, various levels of quality of
service can characterize a connection between a producer and a

consumer. For instance, the dataflow control can limit the push
until acquired data becomes significantly different.

Dynamic sensor-based applications are characterized by the
fact that measurement producers and measurement consumers
are introduced or removed from the application at run-time. For
instance, a newly-installed smoke detector should be taken into
account by a fire monitoring system without the need to restart
it. Although there exist different middleware platforms and
component models that can be used in the construction of
sensor-based applications, they do not usually support the
dynamic aspect in an explicit way, as dynamism usually has to
be supported programmatically. Managing dynamism, which
can be considered a non-functional requirement, through code
is generally a complex task. Furthermore, this approach results
in a mix of functional and non-functional code and it makes the
architecture of the application difficult to understand and to
modify as connection logic is buried inside the code.

This paper proposes an approach to describe dynamic
sensor-based applications through the use of a declarative
language called Wired Application Description Language
(WADL). This language describes collections of connectors
that bind measurement producers and measurement consumers.
To support dynamism, a WADL descriptor is capable of
expressing variable sets of connectors that can be created and
destroyed dynamically. These descriptors are further used by
an interpreter which is responsible for managing the connectors
between measurement producers and consumers as they are
introduced or removed dynamically from the execution
environment.

The remainder of the paper is structured as follows. Section
2 introduces dynamic sensor-based applications, Section 3
describes the WADL characteristics, Section 4 presents an
implementation of the execution environment based on the
OSGi framework and its validation. Section 5 discusses related
work and finally Section 6 exposes future work and concludes
this paper.

II. DYNAMIC SENSOR BASED APPLICATIONS
This section describes the concepts and issues associated to

the introduction of dynamism in sensor-based applications.

This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the IEEE CCNC 2008 proceedings.

1-4244-1457-1/08/$25.00 © IEEE

A. Dynamism in sensor based applications
Dynamic sensor-based applications are characterized by the

fact that measurement producers and measurement consumers
need to be introduced or removed from the application at run-
time. Dynamism is highly desirable in a majority of sensor-
based applications. Certain environments, such as medical
monitoring systems, impose this type of constraint, as it is not
possible to turn off the monitoring application in order to
modify the sensor network topology or to add or remove data
processing modules. In large scale sensor networks, such as the
ones present in residential or office building automation [3,4],
the addition or the replacement of sensors such as
thermometers or smoke detectors by human operators must be
done automatically without stopping the building's monitoring
systems. In a similar way, dynamic changes in the quality of
service offered by sensors could impact the topology of the
application. Moreover, the configuration of a complex and
dynamic topology is a real burden for human administrators.
Automating this task can help reduce costs. Fig. 1 presents a
portfolio of sensor-based applications commonly used in
building automation. For instance, adding a presence detector
or replacing a faulty one requires both the lighting control
application topology and the burglar central application to be
modified since they share concurrently those sensors. These
operations are error-prone since the maintenance operator may
not be the administrator of both applications.

B. Modeling sensor-based applications using a service-
oriented approach
Traditional software architectures are usually modeled

statically through the description of sets of components and
connectors that bind the components using Architecture
Description Languages (ADLs) [5]. Dynamic software
architectures introduce a particular challenge, because they
must support changes at the architectural level during
execution. These changes may include the creation or removal
of component instances, and connections between these
instances at run-time.

burglar
central

fire
central

Room 100 Room 199

ind oor
the rmo me ter outd oor

the rmo me terpresencedetectorsmokedetector

air cond. lighting

presencedetectorsmokedetector

air cond. lighting

HVAC
central

l ighting
central

HVAC
central

lighting
central

Actuators

Sensors

Control
loops

Data flow
Action

Notation

ind oor
the rmo me ter

burglar
central

fire
central

Room 100 Room 199

ind oor
the rmo me ter outd oor

the rmo me terpresencedetectorsmokedetector

air cond. lighting

presencedetectorsmokedetector

air cond. lighting

HVAC
central

l ighting
central

HVAC
central

lighting
central

Actuators

Sensors

Control
loops

Data flow
Action

Notation

ind oor
the rmo me ter

Figure 1. Sensor-based applications in residential or building automation

Furthermore some applications with dynamic architectures
have additional requirements with respect to the introduction or
removal of components at runtime. For instance, components
may not be available at the time the original application is
composed. Supporting these requirements can be achieved by
incorporating a discovery mechanism in the environment. In
service-oriented architectures (SOA) [6,7], this discovery

mechanism is usually some type of registry where components
publish the services they provide. Clients can later query the
registry or receive notifications about services that are
published or removed from the registry at runtime. Once a
client discovers a particular service, it can bind directly to the
service provider and, in this way, the application architecture
evolves continuously as new components are incorporated or
removed from the execution environment. Moreover, with a
SOA approach every component can be substituted by another
one as long as they comply with the same contract (typically
defined through an interface). If applied to sensor-based
applications this substitution mechanism strengthens the
availability and robustness of components representing
physical measurement producers.

The OSGi specification [8] proposes facilities to manage
connections between data producers and consumers through its
WireAdmin service using a SOA approach. Producers and
consumers are modeled as uniquely identified OSGi services
(i.e. they are published in a service registry along with a set of
properties). They are delivered in deployment units called
bundles. At runtime the connectors, namely wires, are managed
by the WireAdmin Service. This service allows wires to be
created, deleted, retrieved and updated programmatically. Once
connected, producers can either push data into consumers or
provide data when they are polled through the wires. Wires are
persistent entities that bind specific producers and consumers
through unique identifiers.

C. WireAdmin service limitations
Although the WireAdmin mechanism supports the

construction of dynamic sensor-based applications, it has
several limitations. The first one is that wires are inextricably
tied to specific consumers and producers via persistent and
unique identifiers. The second one is that modifications of the
topology must be realized programmatically. As a result, there
is no explicit representation of the architecture, for it is hidden
inside the code responsible for creating or destroying the wires.
Furthermore, the life-cycle (i.e. activation and passivation) of a
SBA depends generally on the presence or on the absence of
mandatory producers or consumers. For instance, a HVAC
central (see Fig. 1) may be stopped if no more thermometers
are available. The code that manages the application life-cycle
is also mixed with the code creating and destroying the wires.
As a consequence, evolution and maintenance of such wired
applications is complex and error-prone.

III. WADL CHARACTERISTICS
The declarative description language for dynamic-sensor

based applications (WADL) is based on three main
requirements. First, it must allow producers and consumers to
be introduced and removed at run-time. Second, it must support
the binding of producers and consumers which may not have
been available at the time the composition was described.
Third, the application must be activated or passivated
depending on the presence or absence of mandatory producers
or consumers. This section describes the main characteristics of
the language and presents an example of a fire detection
application.

This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the IEEE CCNC 2008 proceedings.

A. Language meta-model
The main WADL language concepts and their relationships

are represented in the meta-model in Fig. 2. These concepts
include:

WireApp: A wireapp represents a wired application which
is composed of dynamic sets of producers, consumers and their
connections called wires. A wireapp defines the overall life-
cycle according to the dynamic sets which are required to
activate and deactivate the data-flow in the application.
wireapp life-cycle is discussed in more depth in the next
section.

WireSet: As its name suggests, a wireset represents a
dynamic set of wires that connect producers and consumers. To
support flexibility in wire creation, wiresets are not defined in
terms of specific producer and consumer identifiers but are
rather characterized by two filters that constrain the selection of
producers and consumers. These filters, which are based on the
properties associated to the producers and consumers, allow
producer and consumer selection to be narrowed or widened. A
narrow selection can be achieved by filtering producers or
consumers based on their unique persistent identifiers, whereas,
a wide selection can be achieved by filtering them according to
other properties such as the type of measurements that they
produce or consume. In Fig. 4, both wireset filters illustrate an
intermediate selection where just the identity of the consumer
matters. The mandatory attribute defines if the wireset is
mandatory or optional for the wireapp life-cycle. Mandatory
wiresets impose to have at least one producer-consumer
connection to enable the wireapp activation. Wiresets also
define a removal policy for the wires that are associated to
them. The removal policy, which can take the values defined in
the RemovePolicy enumeration, defines wire life-cycle policies.
Filters and removal policies are discussed in more depth in the
next section.

WireApp

-id: String
-description: String
-acyclic: boolean

WireSet

-id: String
-description: String
-producersFilter: String
-consumersFilter: String
-mandatory: boolean
-removePolicy: RemovePolicy

Property

-name: String
-value: String
-type: String

RemovePolicy
<<enumeration>>

+KEEP_ALIVE
+WHILE_PRODUCER
+WHILE_CONSUMER
+IF_DISCONNECTED

Wire
<<persistent>>

Consumer Producer

composed of
1

1..*

generates

1 0..*

characterized by

-properties

1

0..*

connects

0..*

0..1

connects

0..*

0..1

Figure 2. Wired Application Description Language meta-model

Property: Properties are specified QoS properties used by
the wires and the Producers in order to control the dataflow and
alleviate consumers load. Properties attached to wiresets are
used to initialize the generated wires. A frequently-used
property is a filter expression on produced data to push a new
value only when the variation with the previous one is
significant. For instance, the filter presented in the example of
Fig. 4, forces the value to be refreshed at least every 2000
milliseconds.

B. Wired Application life-cycle
The overall activity of a SBA is usually constrained by the

presence or the absence of some producers or consumers. This
activity is mainly defined by the dataflow between producers
and consumers in the application. Handling the application life-
cycle (i.e. activation and passivation) consists in starting and
stopping the dataflows. Since the WireAdmin specification
does not define those operations on wires, the application
activation consists in the creation of wires whereas its
passivation consists in the destruction of the previously created
wires. In WADL, the wireapp cannot be activated until all
mandatory wiresets match at least one producer with one
consumer.

WADL proposes four different behaviour policies when a
consumer or a producer is removed from the running
application. The default policy, called IF_DISCONNECTED,
destroys the wire if either the consumer or the producer are
removed. The WHILE_PRODUCER and
WHILE_CONSUMER policies result in the destruction of the
wire only if the producer or the consumer are removed
respectively. Those two policies prevent inefficient wire
destructions when the producers or the consumers disappear
temporarily. Finally, the KEEP_ALIVE policy results in wires
that are persistent once they are created and that must be
removed programmatically. This policy is tied to the
WireAdmin Service specification which requires the wire
persistence.

Finally, the wireapp is passivated when the last wire of a
mandatory wireset is removed. As a consequence, all the wires
in the wiresets of the wireapp are removed, including those
created with the KEEP_ALIVE policies.

C. Describing a fire central wired application
In WADL, applications are described declaratively in an

XML descriptor where the wireapp element is at the root. As a
consequence, WADL descriptors contain one wireapp which is
itself composed of one or more wiresets. Inside wiresets, filters
are described using an LDAP syntax.

 Fig. 3 presents the components of a simple fire detection
application similar to the fire central module included in Fig. 1.
This module displays alert messages when abnormal
temperatures (expressed in Kelvin) or smoke levels are
detected in any room of the building. The topology of this SBA
is described in the descriptor shown in Fig. 4. In this example,
the wireapp is composed of two different wiresets. The first
wireset ties a specific consumer (the fire central), filtered
through its unique identifier, to any producers of temperature
whose type can be either Measure (javax.measure.Measure) or

This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the IEEE CCNC 2008 proceedings.

Measurement (org.osgi.utile.measurement.Measurement). The
second wireset ties any smoke sensor that produces a
SmokeLevel to a specific consumer, in this case the fire
detection central.

Wire Admin Service ImplWire Admin Service Impl

Wire

Room100
Temperature

Sensor

Room100
Temperature

Sensor

Wire Wire

PP

Room199
Temperature

Sensor

Room199
Temperature

Sensor

Fire CentralFire Central

PP CC CC PP

Room199
Smoke

Detector

Room199
Smoke

Detector

WireAdmin
Binder

WireAdmin
Binder

P C P C P C
WireAdmin

flavors=j.m.
Measure (SI.K)

flavors=o.o.m.
Measurement

(SI.K)

flavors=Measure
& Measurement

(SI.K)
flavors=c.a.d.
SmokeLevel flavors=c.a.d.

SmokeLevel

flavors=Unit (K) flavors=Unit (K) flavors=SmokeLevel

WADL

uses

Figure 3. A fire detection wired application

The “smoke2central” wireset is the only one mandatory for
the application activation. So the wires are effectively created
when at least one smoke level producer can be connected to the
fire central component. In this fire detection application, two
different wire removal policies are used. The
WHILE_CONSUMER policy will not destroy the wires until
the fire central consumer becomes unavailable, even if smoke
detectors components were to be removed.

IV. EXECUTION ENVIRONMENT AND VALIDATION
This section presents the WireAdminBinder, an engine that

interprets the WADL descriptors and that manages sets of
wires and their life-cycle. It also presents a validation of the
WireAdminBinder built on top of the Felix OSGi
implementation [9].

A. WireAdminBinder and application design
The WireAdminBinder is the engine that interprets WADL

descriptors. It is implemented on top of the OSGi framework
and delivered in a separate bundle. It relies on the WireAdmin
Service to create persistent wires between consumers and
producers according to the filters described in the wiresets. As
producers and consumers are deployed or removed to/from the
execution platform, the WireAdminBinder is notified and
reacts by creating or removing wires according to the policies
defined in the descriptor.

Two wired application designs are conceivable by the
application architect. A first one where the WireAdminBinder
acts as a global orchestrator of all its wiresets. Another design
considers producers and consumers as autonomous components
managing their own wiresets. However, this latter choice has
some drawbacks. First, the wiresets managed by the
independent components cannot be passivated according to the
state of the other independent wiresets. Second, the lack of a
global architecture orchestrator can introduce some issues such
as the difficulty of preventing circular dependencies.

 Furthermore, most of SBA are designed as a sequence of
stages processing measurement flows. The first stage is
generally a set of sensors producing raw measurements and the

last stage is a set of reporting tools consuming consolidated
measurements. The intermediary stages can be components that
consume measurements, process them and then produce
measurements. When the produced measurements have the
type (i.e., flavor in the WireAdmin terminology) of the
consumed one, the architect has to take care of the wiresets
definition in order to avoid cycles in the wire topology. The
cycle prevention should be controlled at the wireapp level
when the attribute acyclic is set to ‘true’. By default, the wire
creation is not controlled in order to let the architect design
applications use feedback loop in the architecture.

B. Validation
WADL and WireAdminBinder were experimented and

validated in the context of the PISE project. This project was
led by Schneider Electric, an electric-protection equipments
manufacturer. The PISE project aimed to provide a component
model for the development of dynamic sensor-based
applications (SBAs). These applications are designed by
domain analysts and experts by assembling and by configuring
components selected from a domain-specific library.

This component model, called SensorBean [10], offers
three message exchange patterns to the developer: request-
response, publish-subscribe events and dataflows. The latter is
implemented by producer-consumer interactions. The producer
components represent electric sensors that acquire electric
measurements such as power or voltage. The consumer
components represent reporting tools, online dashboards and
actuators such as circuit breakers.

The wire topology between components is described using
the WADL formalism. Furthermore, these SBAs are
dynamically deployed on industrial gateways installed inside

<?xml version="1.0" encoding="UTF-8"?>
<wireapp id="building.FireCentral"
 description="A Fire central wired application"
 acyclic="true">
 <!-- a many-to-one wireset without wire properties -->
 <!-- connects temperature sensors to the fire central -->
 <!-- + keepAlive remove policy -->
 <wireset
 id="temperature2central"
 description="temperatures consumed by the fire central"

 producers-filter="(&(|(wireadmin.producer.flavors=
 *org.osgi.util.measurement.Measurement)
 (wireadmin.producer.flavors=
 *javax.measure.Measure))(unit=SI.K))"

 consumers-
filter="(service.pid=building.firecentral.temperature)"
 mandatory="false"
 removepolicy="KEEP_ALIVE"

 />
 <!-- current rooms smoke level to the fire central -->
 <!-- + whileConsumer remove policy -->
 <wireset
 id="smoke2central"
 description="smoke level producers consumed by the fire

central"
 producers-filter="(wireadmin.producer.flavors=
 *com.acme.data.SmokeLevel)"

 consumers-filter="(service.pid=building.firecentral.smoke)"
 removepolicy="WHILE_CONSUMER"
 mandatory="true"
 />
 <property
 name="wireadmin.filter"

 value="(wirevalue.elapsed>=2000)"
 type="java.lang.String"
 />
 </wireset>
</wireapp>

Figure 4. Wireapp describing a fire central application

This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the IEEE CCNC 2008 proceedings.

factories networks. A gateway can simultaneously run several
sensor-based applications which may share sensors.

V. RELATED WORK
Sensor-based applications are a core element of the so-

called “Internet of Things”. Architects and developers of such
applications require middleware support to tackle the
complexity of sensor infrastructures. These infrastructures are
composed of distributed nodes with various capabilities
(sensors, gateways, intermediate servers, corporate servers, etc)
on various protocols. These middlewares [11] can provide
programming paradigms to query the sensors network as a fully
distributed database [12], to publish events triggered on
threshold, or to push periodically measurements such as OMG
Data Distribution Service, IEEE/NIST 1451.x or OSGi
WireAdmin. They can enforce Quality of Service requirements
such as communication latency or throughput, and provide
means to discover and manage the nodes. Most of them are
designed to meet the challenges of wireless sensors, focusing
on the energy-efficient computing. But unlike the
WireAdminBinder none of them provide a convenient way to
build the dynamic bindings that occur between nodes
cooperating in an application at runtime.

Component models such as SOFA 2.0 [13] and O3MiSCID
[14] provide dynamically reconfigurable dataflow connectors.
Nevertheless, connections are set between identified
components and the application life-cycle cannot be driven
automatically by the presence of producers and consumers.
ServiceBinder [15] proposes to automate binding and life-cycle
controls for the OSGi platform but it addresses only client-
server interactions between services and does not fit for the
SBA design.

Architectural Description Languages or ADLs are modeling
notations that allow the architecture of a system to be
described, mainly in terms of components, connectors and
configurations. The majority of existing ADLs deal with static
composition, although ADLs such as Darwin support a degree
of dynamism [5]. The WADL is different from an ADL in the
sense that it does not describe components but dynamic sets of
components. However, in ADL terms, wiresets could be
regarded as collections of connectors and wireapps as
configurations.

VI. CONCLUSIONS
This paper has presented a description language to facilitate

the construction of dynamic sensor-based applications built
following the OSGi WireAdmin model. An interpreter for this
language, called WireAdminBinder has also been implemented
on top of the OSGi framework. Applications that are built
using the WADL language support the introduction and
removal of measurement producers and consumers through the

dynamic creation of wires that connect these two entities.
WADL has been successfully used in a research project led by
an industrial partner. It must be noted that although the work
presented here is implemented on top of the OSGi framework
and the WireAdmin Service, its concepts can easily be ported
to any dynamic service platform. One area that could be
explored in the future is the use of the properties associated to
the wiresets to describe more complex quality of service
properties.

REFERENCES
[1] International Telecommunication Union, “The Internet of Things”,

Executive Summary, ITU Internet Reports 2005, November 2005J.
Clerk Maxwell, A Treatise on Electricity and Magnetism, 3rd ed., vol. 2.
Oxford: Clarendon, 1892, pp.68–73.

[2] N. Nillson, “Connecting Producers and Consumers”, position paper at
OOPSLA Worshop on References Architectures and Patterns for
Pervasive Computing, 27 October 2003, Anaheim, CA, USA
http://jeckstein.com/oopsla/pervasive-computing.

[3] D. Marples, S. Moyer, “Home Networking and Appliances”, in Diane
Cook, Sajal Das, Smart Environments: Technologies, Protocols and
Applications, Wiley, 2004.

[4] D. Snoonian, “Smart Building”, IEEE Spectrum, August 2003.
[5] N. Medvidovic, R.N. Taylor, “A Classification and Comparison

Framework for Software Architecture Description Languages”, IEEE
Transactions on Software Engineering, Vol. 26, No. 1, (pp. 70-96),
January 2000.

[6] G. Bieber, J. Carpenter, “Introduction to Service-Oriented
Programming”, OpenWings whitepaper, 2001,
http://www.openwings.org/

[7] H. Cervantes and R. S. Hall: “Chapter I: Service Oriented Concepts and
Technologies”, in the book “Service-Oriented Software System
Engineering: Challenges and Practices” (ISBN 1-59140-426-6) edited by
Zoran Stojanovic and Ajantha Dahanayake, Idea Group Publishing,
2005.

[8] Open Services Gateway Alliance, “OSGi Service Platform Specification,
Release 4”, Available online at http://www.osgi.org

[9] Apache Felix : http://cwiki.apache.org/FELIX/index.html
[10] C. Marin, M. Desertot, “SensorBean: A Component Platform for Sensor-

Based Services”, proceedings of the International Worshop of
Middleware for Pervasive and Ad-Hoc Compouting (MPAC), Grenoble,
France, 28-29 November 2005.

[11] W.B. Heinzelman, A.L. Murphy, H.S. Carvalho, M.A. Perillo,
“Middleware to support sensor network applications”, IEEE Network,
Volume18, Number 1, Jan/Feb 2004, pp. 6- 14.

[12] P. Bonnet, J. Gehrke, P. Seshadri, “Querying the physical world”, IEEE
Personal Communication, Volume 7, October 2000, pp pp. 10-15.

[13] T. Bures, P. Hnetynka, F. Plasil, “SOFA 2.0: Balancing Advanced
Features in a Hierarchical Component Model”. SERA 2006: 40-48.

[14] R. Emonet, D. Vaufreydaz, P. Reignier, J. Letessier, “O3MiSCID: an
Object Oriented Opensource Middleware for Service Connection,
Introspection and Discovery”, 1st IEEE International Workshop on
Services Integration in Pervasive Environments - June 2006.

[15] H. Cervantes, R.S. Hall, “Automating Service Dependency Management
in a Service-Oriented Component Model”, 6th International Symposium
on Component-Based Software Engineering (CBSE), Portland, OR,
2003.

This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the IEEE CCNC 2008 proceedings.

	Select a link below
	Return to Main Menu

